
SASRec

Francisco Rencoret frencoret@uc.cl - Francisco Pérez faperez10@uc.cl

December 2018

1 Abstract

Self Attentive Sequential Recommendation model uses self-attention mecha-
nisms with matrix factorization techniques to understand user’s sequential be-
haviour and recommend items. In this work we implement our own version of the
model, optimize and investigate the correlations of the different model’s struc-
tures with the desired recommendation task. Specifically, we studied the corre-
lation between self-attention stacked layers with longer data sequences within
model’s performance. On the other hand, SASRec model is compared with other
baseline models available in the OpenRec Library (BPR, PMF, RNNRec and
VanillaYoutubeRec), however, SASRec vastly outperforms all baseline methods
analyzed in the investigation.

2 Introduction

Figure 1: A simplified diagram showing the training process of SASRec. At
each time step, the model considers all previous items, and uses attention to
‘focus on’ items relevant to the next action.

1

3 Related Work

Recommendation systems seek to model users interaction with items and un-
derstand their behaviour. They use historical data to learn and suggest future
items to enhance the user’s upcoming experiences. Systems can use the explicit
(e.g. item ratings) or implicit feedback (e.g. time spent looking at an item),
but we will focus on model that use the first option.

Related works can be subdivided by the different approaches they take for the
recommendation task. We will cover general, temporal, sequential and attentive
models.

General models usually rely on collaborative filtering considering content or
context information of items. Content models receive information about the
item’s structure or composition (e.g. length of movie), while context models re-
ceive information about the context in which the user consumed the item (e.g.
which device did the user use when consuming the item). When data becomes
sparse, they combine these models with Matrix Factorization MF techniques,
which uncover latent dimensions to represent user and items relationships [1].
General models where leading recommendation tasks until deep learning tech-
niques appeared presenting better results in different tasks. Multi-layer per-
ceptrons are used for capturing item’s content [2] and replacing MF techniques
[3].

Temporal models try to capture changes in the consumption of items by
the users through time. They are capable of understanding that temporal drift
items experience (e.g. how user’s preferences has changed for movies). Sequen-
tial models focus mainly on the sequence of user’s historical data, obviating
temporal separation between items consumptions. For example, GRU4Rec [4]
uses Recurrent Neural Networks RNN for capturing knowledge from users past
historical consumption sequences.

Lastly, attention mechanisms have shown state-of-the-art results for several
tasks such as machine translation or visual question and answering tasks. These
models consider a query, key and value to learn attention coefficients which
relate queries with certain values more than others. Bahdanau [5] present query
given attention models while the Tranformer [6] shows methods that enable
self-attention within data. This work focuses on the second method mentioned.
Although they are not used specifically to recommend, they work as embedding
enhancers and complement recommendation models such as RNN or MF.

4 Dataset

Experiments were done on the MovieLens dataset. This is a well-known dataset
in the field of recommendation systems and contains user and movie identifiers as
well as ratings and timestamps. The dataset is made available by the GroupLens
research group and University of Minnesota [10] from the movie ratings webpage
www.movielens.org.

Preliminary experiments were performed on the small MovieLens dataset

2

which contains 100,000 ratings. However, the final results shown in this paper
are done on the 1 million ratings version of the dataset. This change was made
because we wanted the results to be comparable to the original paper’s results.

The data set was split on training, validation and test subsets. Since the
model is trying to predict the next item to be consumed by the user, ratings
were ignored.

The training set is made up of items consumed sequentially (ordered by
timestamp) by every user excluding the last 2 items, since they are part of the
validation and testing sets. Here you can see an example considering a length
of sequence equal to 4 (n = 4):

When sequences of consumption are longer that the specified n sequence
length, initial items are ignored (in this case Item18).

When a user has consumed less than n items, the sequence is filled until
length n is satisfied with zero-padding.

The n hyper-parameter is determined based on the average of ratings per
user, which is roughly 165. Although the n parameter is later analysed and
iterated on different values to find the best one for the model.

The same data set is used for the SASRec model as well as for the baseline
models based on OpenRec included for comparison reasons.

5 Methodology

SASRec is a model that uses self-attention and matrix factorization mechanisms
on a sequential recommendation setting. As explained in the previous section,
we modeled the data as a sequence of items, where we took the last n items and
created a sequence for each user. During the training process, for every user the
model tried to predict the next item after the sequence (item in position n+1).
In this section we will explain how we integrated a self-attentive model with a
matrix factorization technique to predict the most likely product a user should
consume after a sequence of n item consumptions.

5.1 Item Embedding Layer

As explained in the section before, items are represented with an index within
a dictionary containing all items. We built an item embedding matrix M ∈|I|xd

3

which maps a given item i to an embedding vector of latent dimension d. Given
a sequence of length n, we created a matrix E = [M1,M2,M3, ...Mn] that
contains all the embeddings for the n items of the sequence.

5.2 Positional Embedding Layer

Self-attentive models are proven to lose the sequential information in the data
because they don’t consider the position of the keys / values in the sequence.
The attention coefficients of a query and a particular key won’t depend on the
position of the key in the sequence. To avoid this, we implemented an Positional
Embedding Layer. The Transformer proposed to use a fixed sinusoidal function
to provide an positional embedding, but we achieved better results by provid-
ing another embedding layer for the positions in the sequence. This position
embedding matrix P ∈ Rnxd maps sequence’s indices to vectors in the latent
dimension d. So, we create a new E′ = [M1+P1,M2+P2,M3+P3...Mn+Pn]

5.3 Self-Attention Layer

Attention mechanisms use queries, keys and values. As explained in [5], the
scaled dot product attention can be calculated as

Attention(Q,K, V) = softmax(Q·K√
d

) · V

The term inside the softmax function basically calculates the attention coef-
ficients that the query assigns for each key. The dot product between the query
and the key gives a similarity measure (which is normalized to avoid large val-
ues specially with high dimension vectors) which is then passed by a softmax
so that they become coefficients that sum 1. Usually keys and values are the
same, so then the query becomes the weighted sum of all the values with their
attention coefficients. In other words, the query’s embedding now considers the
rest of the embeddings of the values and combines them using their keys.

Self-attention can be obtained when using the same queries, keys and values.
Intuitively, each item’s embedding in the sequence (query) now considers the rest
of the sequence item’s embeddings (keys and values), obtaining more knowledge
from the sequence. This helps the model because the item’s embeddings are
now not independent, but each now relates with the others.

Following the methodology proposed in [5], we pass queries, keys and values
through a linear projection (to reduce dimensionality) and feed them to the
attention module explained,

S = SA(E′) = Attention(E′WQ, E′ ·WK , E′ ·WV)

Following the nature of the recommendation, We structured self-attetion
modules so that items consider only previous items within the sequence to pay
attention to. Therefore, we modify attention by forbidding all links between
QiandKj when j > i.

4

5.4 Point-Wise Feedforward Layer

Though the self-attention module is able to aggregate all items embeddings
with adaptive weights, it still achieves linear relationships. In order to enable the
model to achieve non-linear interactions between latent dimensions, we integrate
a point-wise two layer feedforward network (shared weights for the sequence).
As a result, we obtain

Fi = FFN(Si) = RELU(Si ·W1 + b1)W2 + b2

where W1,W2anddxdmatricesandb1, b2ared− dimensionalvectors.

5.5 Stacking Self-Attention modules

One block of self-attention with point-wise feedforward network will be able
to aggregate information and obtain relationships within one distance level. In
other words, it just captured the relationship between pairs of items. If we stack
more modules, the model will be able to capture more complex interactions
between triplets, quartets and b-long interactions:

Sb = SA(F b−1)
F b
i = FFN(Sb

i)
S1 = SandF 1 = F

As the model gets deeper, over-fitting and vanishing gradient problems ap-
pear. To avoid this, we implemented:

5.6 Layer Normalization

Layer Normalization helps the model train with stability and avoid vanishing
gradients. Each self-attention block has their own Layer Normalization modules
with their own weights.

LayerNorm(x) = α x−mu√
sigma2+epsilon

+ β

where α and β are learnable parameters.

5.7 Dropout

Dropout techniques help solve overfitting problems. With a dropout probability
given as a hyperparameter, we randomly turn off neurons during training to
reduce the model’s capabilities for learning forcing the model not to learn the
training data exactly losing generalization performance (overfitting).

5

5.8 Residual Connections

Even though deeper networks may learn better hierarchical features, the pre-
sented many problems until Residual Connections appeared; Residual connec-
tions have helped deep networks learn in an optimal way. The connections
enable the model to propagate lower-layer features to deeper layers, so that the
model can learn from both. This is particularly useful for sequential recommen-
dation. After several self-attention blocks all the embeddings are now entangled
with the other embeddings of the sequence, but results have shown that the
last item’s embeddings of the sequence are important for the prediction. The
Residual Connections help the model propagate those last item’s embeddings
to the final layers and help the prediction.

After each self-attention or point-wise feedforward network we apply these
techniques, so that the output would be

g(x) = x+Dropout(g(LayerNorm(x)))

5.9 Prediction Layer

After the b self-attention and poin-wise feedforward blocks we obtain F b matrix
that contains the aggregated embeddings for each item in the sequence. In
other words, we obtain a matrix of dimension nxd . To predict, use a Matrix
Factorization technique and calculate the relevance of the item i being the next
item to be consumed after consuming the past t items:

ri,t = F b
tN

T
i

To reduce the model’s parameters and avoid overfitting, we used the same
item embedding matrix mentioned at I. Basically, given a Fi we calculate the
relevance with all the possible items and recommend the items with the highest
relevance.

6 Parameter Analysis

The investigation focused primarily on the analysis of some parameters that are
crucial for the working of the SASRec model, mainly the maximum sequence
length and the number of stacked attention blocks. The selection of the max-
imum sequence length in the experiments are based on the presumption that
longer sequences with deeper self-attention could result in better results since
far apart item consumption patterns could be exploited.

closer to the average number of ratings per user yields better results on
testing.

The only practical way of experimenting with parameters is trying the values
in a grid, unless there is some plausible heuristic to search for the parameters,
but this is not the case. Considering the processing power limitations in the
investigation, the values for the parameters that were experimented with were:

6

Parameter Values
Maximum Sequence length (n) [50, 200]
Number of Attention Blocks [2,4,6]

Table 1: Experiment Values

7 Results

Results can be separated into 2 sections. The first consists of baselines and
initial SASRec results. The second in an exploration of results only within
SASRec varying the parameters to find the optimal ones.

The main evaluation metrics are NDCG@10 and HitRate@10 these were
chosen because in [9] they use these metrics and our investigation wanted to be
comparable to the one from the original paper.

7.1 Baselines and SASRec Initial

The baseline comparison algorithms were selected from a pool the OpenRec
library offers based on which were the better performing ones.

First, BPR (Bayesian Personalized Ranking) [7], a very common model to
learn personalized rankings from implicit feedback.

Second, PMF (Probabilistic Matrix Factorization) [8], a model which works
very well on large, sparse and very imbalanced datasets.

Third, RNNRec a model proposed by the creators of the Openrec library
that uses Recurrent Neural Networks to model the sequence of users’ items
consumption.

Forth, VanillaYoutubeRec is a model that fits in the same category as the
third and uses multi-layer perceptrons.

The SASRec model is set with the same parameters as [9] proposes.
The results for baselines algorithms and the initial SASRec can be seen in

the following table:

Best Baseline (BPR): NDCG@10: 0.3220 Hit@10: 0.5578

Best SASRec (Max. Sequence Length = 200 and Num. Attentions Blocks = 2)
NDCG@10: 0.5170 Hit@10: 0.7784

The best Parameters for SASRec show that a longer sequence length yields
better results, while deeper self attention blocks over-fit more, leading to worse
results.

7.2 SASRec Parameter Analysis

Since the above results of the SASRec model are with the same parameters as
in [9], the investigation focused on tweaking some of the hyper parameters with
hopes on finding better results that on [9]. The parameters that were modified
and experimented on where 2. First, we modified the maximum length of the

7

HitRate@10 n=50 n=200
b = 2 0.7720 0.7784
b = 4 0.7460 0.7597
b = 6 0.7153 0.7266

Table 2: Test HitRate Analysis

sequence to predict (from the original 50 to 200). Second, we modified the
number of attention blocks (with values 2, 4 and 6).

The following table show the results obtained after 1000 iterations:
The parameter combinations that generated the best results were 2 attention

blocks and a maximum sequence length of 200. Our initial hypothesis that
more attention blocks in conjunction with longer sequences to exploit far apart
item consumption patterns was wrong. However, we were able to find a better
performing model with longer maximum sequence lengths.

8 Conclusions

In this investigation, we propose a modification to the original SASRec model
by tunning some of the parameters that are chosen in [9]. The results show that
original paper’s 2 attention blocks stack works well, but choosing a maximum
sequence length similar to the average number of ratings per user gives better
performance. The initial hypothesis of longer sequences and deeper attention
blocks would yield better results gets refused.

A future related investigation could be to try this model with a bigger dataset
to alleviate over-fitting and prove out hypothesis fully. Also, the model can
be implemented by stacking the same self-attention block and point-wise feed-
forward network instead of different ones. In other words, to pass the data
several times through the same matrices in stead of learning new weights each
time to make the attention block generalize better.

Another posible future work is trying with a bigger dataset, namely the 27
Million ratings version of the MovieLens dataset used. This is with the purpose
of preventing over-fitting. One last future suggestion to make the prediction
better is to filter the dataset with rating that are better than 3 stars in this
way the system will only recommend items that were liked by the users and
not just the most probable next item independently of it being a good or bad
recommendation.

References

1. Y. Koren and R. Bell, “Advances in collaborative filtering,” in Recom-
mender Systems Handbook. Springer, 2011.

8

2. S. Wang, Y. Wang, J. Tang, K. Shu, S. Ranganath, and H. Liu, “What
your images reveal: Exploiting visual contents for point-of-interest recom-
mendation,” in WWW, 2017.

3. X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. Chua, “Neural collabo-
rative filtering,” in WWW, 2017.

4. B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based
recommendations with recurrent neural networks,” in ICLR, 2016.

5. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in NIPS, 2017.

6. D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in ICLR, 2015.

7. Steffen Rendle , Christoph Freudenthaler , Zeno Gantner , Lars Schmidt-
Thieme, BPR: Bayesian personalized ranking from implicit feedback, Pro-
ceedings of the Twenty-Fifth Conference on Uncertainty in Artificial In-
telligence, p.452-461, June 18-21, 2009, Montreal, Quebec, Canada

8. Ruslan Salakhutdinov , Andriy Mnih, Probabilistic Matrix Factorization,
Proceedings of the 20th International Conference on Neural Information
Processing Systems, p.1257-1264, December 03-06, 2007, Vancouver, British
Columbia, Canada

9. Wang-Cheng Kang, Julian McAuley. 2018. Self-Attentive Sequential Rec-
ommendation. arXiv:1808.09781. Retrieved from

https://arxiv.org/abs/1808.09781

10. F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets:
History and Context. ACM Transactions on Interactive Intelligent Sys-
tems (TiiS) 5, 4, Article 19 (December 2015), 19 pages.

DOI=http://dx.doi.org/10.1145/2827872

9

